D-structures and Derived Koszul Duality for Unital Operad Algebras

نویسندگان

  • TYLER FOSTER
  • IGOR KRIZ
چکیده

Generalizing a concept of Lipshitz, Ozsváth and Thurston from Bordered Floer homology, we define D-structures on algebras of unital operads. This construction gives rise to an equivalence of derived categories, which can be thought of as a unital version of Koszul duality using non-unital Quillen homology, even though the non-unital Quillen homology of unital objects is zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Masterclass on Koszul Duality for Operads

The idea defining an operad goes back in a sense to Galois for which “the operations are mathematical objects”. This notion is used to model the operations acting on algebraic structures. For instance, there is an operad encoding associative algebras, Lie algebras and commutative algebras respectively. The definition of operad was first given in algebraic topology around 1970, where it was used...

متن کامل

Koszul Duality Complexes for the Cohomology of Iterated Loop Spaces of Spheres

— The goal of this article is to make explicit a structured complex computing the cohomology of a profinite completion of the n-fold loop space of a sphere of dimension d < n. Our construction involves: the free complete algebra in one variable associated to any fixed En-operad; an element in this free complete algebra determined by a morphism from the operad of L∞-algebras to an operadic suspe...

متن کامل

Bar-cobar Duality for Operads in Stable Homotopy Theory

We extend bar-cobar duality, defined for operads of chain complexes by Getzler and Jones, to operads of spectra in the sense of stable homotopy theory. Our main result is the existence of a Quillen equivalence between the category of reduced operads of spectra (with the projective model structure) and a new model for the homotopy theory of cooperads of spectra. The crucial construction is of a ...

متن کامل

trees . Miguel A . Méndez Departamento de Matemática Instituto Venezolano de Investigaciones Cient́ıficas A . P . 21827 , Caracas 1020 – A , Venezuela and Universidad Central de Venezuela Facultad

We introduce here the notion of Koszul duality for monoids in the monoidal category of species with respect to the ordinary product. To each Koszul monoid we associate a class of Koszul algebras in the sense of Priddy, by taking the corresponding analytic functor. The operad AM of rooted trees enriched with a monoid M was introduced by the author many years ago. One special case of that is the ...

متن کامل

Completing the Operadic Butterfly

We complete a certain diagram (the operadic butterfly) of categories of algebras involving Com, As, and Lie by constructing a type of algebras which have 4 generating operations and 16 relations. The associated operad is self-dual for Koszul duality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014